Tuesday, 25th September 2018

Development and Regeneration

Morphogenesis and differentiation of vertebrate central nervous system


 Paola BovolentaGrupo 800x465 

800x600 Normal 0 21 false false false ES X-NONE X-NONE

Paola Bovolenta


Research summary:


Fig. 1. DiI (red) and DiO (green) labelling of cells located in the median anterior neural border of a chick embryo at gastrula stage. 

Fig. 2. Section of an E13 mouse embryo stained with antibodies that recognise differentiating Retinal Ganglion cells.




Fig. 3. Zebrafish embryo with a chimera eye composed of host and EGFP-labelled donor cells. l, lens; r, retina.

Fig. 4. Flat-mount of a mouse embryonic retina electroporated with an EGFP plasmid to label developing retina ganglion cells

Fig. 5. Double staining of St21 medaka-fish embryo hybridised in toto with retinal (Rx3 red) and telencephalic (Fgf8, brown) specific markers.

Our research aims at defining the molecular mechanisms that control the early development of the vertebrate nervous system, mostly focusing on the visual system. We are particularly interested in those aspects that may help pinpointing the causes of congenital eye malformations or that are related to the onset of neurodegenerative diseases. Our main objectives are:

1) Understanding how patterning and morphogenesis of the forebrain are coordinated. There is evidence suggesting that the same signals that promote fate determination during forebrain formation are also driving forces for its morphogenesis. By exploiting the advantages of medaka, zebrafish and chick embryos, we are testing whether cell polarity remodelling and differential cohesive properties among the different forebrain territories are driving forces also for its morphogenesis. See also [Flor’s link] for further information.

2) Establishment of the transcriptional scaffold required for forebrain specification. Many regulators of eye development are expressed throughout the forebrain, raising the question of how is their activity diversified to lead to different patterning outcomes. Using multidisciplinary approaches in medaka, we have shown that graded expression levels and integration in different transcriptional networks are key mechanisms by which two transcription factors important in forebrain specification, Six3 and Six6, differentially contribute to forebrain patterning. Using similar approaches, in collaboration with researchers at the CABD (CSIC-UPO, Seville), we are now extending these studies to reconstruct the transcriptional scaffold required for forebrain specification.  

3) How does Shh signalling contribute to eye development and its connectivity? Shh signalling has a fundamental role in eye patterning and retinal ganglion cell (RGC) differentiation and we showed that it subsequently repurposed to control the growth of RGC axons. We wish now to determine how new components of the pathway, Cdon and Boc, regulate Shh response and diffusion in the visual system and define how Shh is transported and released from RGCs, establishing if the mechanism differs from that established for Drosophila epithelial cells (in collaboration with [link I. Guerrero]).

4) Analysis of the functional of Sfrp1 in neurodegenerative diseases. Sfrps are well-accepted Wnt signalling modulators but they can also work as regulators of metalloprotease activity. We have shown that Sfrp1/2 negatively modulate ADAM10, a metalloprotease with multiple substrates including the Amyloid Precursor Protein, N-Cadherin, axon guidance molecules and mediators of inflammation. Improper processing of some of these molecules is at the basis of neurodegenerative diseases such as Alzheimer’s disease or retinal dystrophies. We are currently analysing the impact of loss or gain of function Sfrp1 on the progression of these diseases, by using mouse genetics and functional approaches. As part of a collaborative effort with other members of the CiberEr we are also interested in understanding the origin of the neurodegenerative events that characterize Lafora Disease.


Latest publications:

  • Rodríguez, J., Esteve, P., Weinl, C., Ruiz, J.M., Fermin Y., Trousse, F., Dwivedy A, HoltC.E. and Bovolenta P. (2005)SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat Neurosci. 8, 1301-1309. (News and Views 8, 1281-1282)
  • Sánchez-Camacho C. and Bovolenta P. (2008) Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retina ganglion cell axons. Development, 135, 3531-3540(cover caption article and Highlighs “In this issue”)
  • EsteveP., Sandonìs A., Cardozo M.,Malapeira J., Ibañez C.,Crespo I., Marcos S., Gonzalez-Garcia S., Toribio M.L., Arribas J., ShimonoA., Guerrero I.and Bovolenta P. (2011). Sfrps act as negative modulators of ADAM10 to regulate retinal neurogénesis. Nat. Neurosci. 14, 562-569. (Selected in The Faculty of 1000)
  • Beccari L., Conte I*, Cisneros E.* and Bovolenta P. (2012) Sox2-mediated differential activation of Six3.2 contributes to forebrain patterning. Development139, 151-164.
  • Sanchez-Arrones, L.*, Nieto-Lopez, F.*, Sanchez-Camacho, C., Carreres M.I., Herrera, E., Okada, A. and Bovolenta, P. (2013) Shh/Boc signaling is required for sustained generation of ipsilateral-projecting ganglion cells in the mouse retina. J. Neurosci. 33, 8596-8607. (Featured article). *Equally contributing.
  • Cardozo M., Sánchez-Arrones L., Sandonis A., Sánchez-Camacho C., Gestri G., Wilson SW, Guerrero, I. and Bovolenta P. (2014) Cdon acts as a Hh decoy receptor during proximal-distal patterning of the optic vesicle. Nat Commun. . 2014 Jul 8;5:4272.



- Prize “Fundaluce”. 2009.
- FENS Comunication/Publication Commitee. 2009-present.
- Scientific Commitee, Telethon Combatti la Distrofia Muscolare e altre Malattie Genetiche, Italy 2006-2009.
- Selección “LS4–Neurosciences” European Research Council (ERC) Starting Grants. (2007-2010).


Doctoral Theses:

1. Los proteoglicanos como moduladores de guía axonal. Isabel Fernaud-Espinosa. Facultad de Ciencias, Universidad Complutense de Madrid. Octubre, 1996. Sobresaliente Cum Laude

2. Expresión, función e interacciones moleculares de Six6 y Six3 durante la morfogénesis del ojo en vertebrados. Javier López-Ríos Moreno. Facultad de Ciencias, Universidad Autónoma de Madrid. Julio, 2002. Sobresaliente Cum Laude

3. Modulación de la diferenciación y de la guía axonal en células ganglionares de la retina por SFRP1. Josana Rodríguez Sánchez. Facultad de Ciencias, Universidad Autónoma de Madrid. Febrero de 2005. - Sobresaliente Cum Laude

4. Estudio de la función de BMP7 en la formación del disco óptico. Julián Morcillo García. Facultad de Ciencias, Universidad Autónoma de Madrid. 16 Septiembre, 2008. Sobresaliente Cum Laude

5. Estudio de la función de Sfrp5 en el desarrollo del ojo y del techo óptico en el pez medaka. José Maria Ruiz. Facultad de Medicina, Universidad Autónoma de Madrid. Lectura en 17 de Abril de 2009. Sobresaliente Cum Laude.

6. Estudio del control transcripcional de los genes Six en vertebrados. Leonardo Beccari. Facultad de Ciencias, Universidad Autónoma de Madrid. Lectura 19 de Mayo 2011. Sobresaliente Cum Laude.

7. Generation of a medaka model for the Microphthalmia with linear skin lesion syndrome. Alessia Indrieri. European School of Molecular Medicine, Napoli, Italia. External co-supervisor (Supervisor: Prof. Brunella Franco). Lectura 14 Abril, 2011

8. Análisis de la función de Boc y Cdo durante el establecimiento de las conexiones retino-tectales en peces teleósteos. Marcos Cardozo. Facultad de Ciencias, Universidad Autónoma de Madrid. En desarrollo.

9. Función de Sfrp1 y Sfrp2 en el desarrollo de la corteza cerebral. Inmaculada Crespo. Facultad de Ciencias, Universidad Autónoma de Madrid. En desarrollo

10. Estudio de la función de la señalización mediada por Shh durante la formación de las vías visuales en vertebrados. Francisco Nieto. Facultad de Ciencias, Universidad Autónoma de Madrid. En desarrollo.

11. Caracterización del Sistema Nervioso Central en modelos animales de enfermedad de Lafora. Lara Trio Duran. Facultad de Ciencias, Universidad Autónoma de Madrid. Co-Dirección: Prof. S. Rodríguez de Córdoba, CIB-CSIC. En desarrollo.


“Efecto mitógeno de Sonic hedgehog (Shh) sobre precursores de oligodendrocitos y su uso en enfermedades desmielinizantes”. nº 200600697.

“Método de diagnóstico de la enfermedad de Alzheimer que emplea Sfrp1 como biomarcador". nº 201130560.

NOTE! This site uses cookies and similar technologies.

If you not change browser settings, you agree to it. Learn more

I understand


¿Qué son las cookies?

Una cookie es un fichero que se descarga en su ordenador al acceder a determinadas páginas web. Las cookies permiten a una página web, entre otras cosas, almacenar y recuperar información sobre los hábitos de navegación de un usuario o de su equipo y, dependiendo de la información que contengan y de la forma en que utilice su equipo, pueden utilizarse para reconocer al usuario.

Tipos de cookies

A continuación, se realiza una clasificación de las cookies en función de una serie de categorías. No obstante es necesario tener en cuenta que una misma cookie puede estar incluida en más de una categoría.

  1. Tipos de cookies según la entidad que las gestione

    Según quien sea la entidad que gestione el equipo o dominio desde donde se envían las cookies y trate los datos que se obtengan, podemos distinguir:

    • Cookies propias: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio gestionado por el propio editor y desde el que se presta el servicio solicitado por el usuario.
    • Cookies de terceros: son aquéllas que se envían al equipo terminal del usuario desde un equipo o dominio que no es gestionado por el editor, sino por otra entidad que trata los datos obtenidos través de las cookies. En el caso de que las cookies sean instaladas desde un equipo o dominio gestionado por el propio editor pero la información que se recoja mediante éstas sea gestionada por un tercero, no pueden ser consideradas como cookies propias.

  2. Tipos de cookies según el plazo de tiempo que permanecen activadas

    Según el plazo de tiempo que permanecen activadas en el equipo terminal podemos distinguir:

    • Cookies de sesión: son un tipo de cookies diseñadas para recabar y almacenar datos mientras el usuario accede a una página web. Se suelen emplear para almacenar información que solo interesa conservar para la prestación del servicio solicitado por el usuario en una sola ocasión (p.e. una lista de productos adquiridos).
    • Cookies persistentes: son un tipo de cookies en el que los datos siguen almacenados en el terminal y pueden ser accedidos y tratados durante un periodo definido por el responsable de la cookie, y que puede ir de unos minutos a varios años.

  3. Tipos de cookies según su finalidad

    Según la finalidad para la que se traten los datos obtenidos a través de las cookies, podemos distinguir entre:

    • Cookies técnicas: son aquéllas que permiten al usuario la navegación a través de una página web, plataforma o aplicación y la utilización de las diferentes opciones o servicios que en ella existan como, por ejemplo, controlar el tráfico y la comunicación de datos, identificar la sesión, acceder a partes de acceso restringido, recordar los elementos que integran un pedido, realizar el proceso de compra de un pedido, realizar la solicitud de inscripción o participación en un evento, utilizar elementos de seguridad durante la navegación, almacenar contenidos para la difusión de videos o sonido o compartir contenidos a través de redes sociales.
    • Cookies de personalización: son aquéllas que permiten al usuario acceder al servicio con algunas características de carácter general predefinidas en función de una serie de criterios en el terminal del usuario como por ejemplo serian el idioma, el tipo de navegador a través del cual accede al servicio, la configuración regional desde donde accede al servicio, etc.
    • Cookies de análisis: son aquéllas que permiten al responsable de las mismas, el seguimiento y análisis del comportamiento de los usuarios de los sitios web a los que están vinculadas. La información recogida mediante este tipo de cookies se utiliza en la medición de la actividad de los sitios web, aplicación o  lataforma y para la elaboración de perfiles de navegación de los usuarios de dichos sitios, aplicaciones y plataformas, con el fin de introducir mejoras en función del análisis de los datos de uso que hacen los usuarios del servicio.

Cookies utilizadas en nuestra web

La página web del CBMSO utiliza Google Analytics. Google Analytics es una herramienta sencilla y fácil de usar que ayuda a los propietarios de sitios web a medir cómo interactúan los usuarios con el contenido del sitio. Puede consultar más información sobre las cookies utilizadas por Google Analitycs en este enlace.

Aceptación de la Política de cookies

El Centro de Biología Molecular Severo Ochoa asume que usted acepta el uso de cookies si continua navegando al considerar que se trata de una acción consciente y positiva de la que se infiere el consentimiento del usuario. En tal sentido se le informa previamente de que tal conducta será interpretada en el sentido de que acepta la instalación y utilización de las cookies.

Ante esta información es posible llevar a cabo las siguientes acciones:

Cómo modificar la configuración de las cookies

Usted puede restringir, bloquear o borrar las cookies de cualquier página web, utilizando su navegador. En cada navegador la operación es diferente, aquí le mostramos enlaces sobre este particular de los navegadores más utilizados: