Jueves, 14 de Diciembre de 2017
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

  • 07-12-2017: LSM510 Vertical reparado. Se ha cambiado el escáner X y el láser de Argón (línea 488).
  • 17-11-2017: Disponible de nuevo eescáner resonante del confocal Nikon A1R.
  • 16-11-2017: Apertura   confocal LSM800 a partir del lunes 20. Para realizar las reservas y organizar las sesiones de formación y asistencia, dirigirse al SMOC (lab 310).
  • 09-02-2017 Láser Maitai del Multifotón fuera de servicio. El equipo se puede utilizar como confocal.
 

ENLACES - REACTIVOS Y FLUORÓFOROS - PROTEÍNAS FLUORESCENTES - ARTÍCULOS - ARTÍCULOS HASTA 2008

 

  • Enlaces a revisiones sobre proteínas fluorescentes (Zeiss)
  • Ellenberg, et al. (1999). Dual-color imaging with GFP variants. TICB. 9, 52-56.
  • Baird, et al. (1999). Circular permutation and receptor insertion within green fluorescent proteins. PNAS. 96, 11241-11246.
  • Pollok and Heim. (1999). Using GFP in FRET-based applications. TICB. 9, 57-60.
  • White and Stelzer. (1999). Photobleaching GFP reveals protein dynamics inside live cells. TICB. 9, 61-65.
  • Griesbeck, et al. (2001). Reducing the Environmental Sensitivity of Yellow Fluorescent Protein. J. Biol. Chem. 276, 29188-29194.
  • Nagai, et al. (2001). Circularly permutated green fluorescent proteins engineered to sense Ca+2. PNAS. 98, 3197-3202.
  • Ando, et al. (2002). An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. PNAS. 99: 12651-12656.
  • Terskikh, et al. (2000). "Fluorescent timer": protein that changes color with time. Science. 290, 1585-1588.
  • Nagai, et al. (2002). A variant of yellow fluorescent protein with fast and eficient maturation for cell-biological applications. Nature Biotech. 20, 87-90.
  • Patterson and Lipincott-Schwartz. (2002). A photoactivable GFP for selective photolabeling of proteins and cells. Science. 297, 1873-1877.
  • Wiedenmann, et al. (2002). A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). PNAS. 99, 11646-11651.
  • Zhang et al. (2002). Creating new fluorescent probes for cell biology. Nature Reviews Molecular Cell Biology. 3, 906-918.
  • Zimmermann, et al. (2002). Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS letters. 531, 245-249.
  • Chudakov, et al. (2003). Kindling fluorescent proteins for precise in vivo photolabeling. Nature Biotech. 21, 191-194.
  • Lippincott-Schwartz, J. and Patterson, G. (2003). Development and use of fluorescent protein markers in living cells. Science. 300, 87-91.
  • Tsien, R. (2003). Imagining imaging's future. Nature Reviews Molecular Cell Biology 4:SS16-SS21.
  • Zimmermann, et al. (2003). Spectral imaging and its applications in live cell microscopy. FEBS letters. 546, 87-92.
  • Verkhusha and Lukyanov. (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotech. 22, 289-296.
  • Rizzo, et al. (2004). An improved cyan fluorescent protein variant useful for FRET. Nature Biotech. 22, 445-449.
  • Karasawa, et al. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 381, 307-312.
  • Ashby, et al. (2004). It's green outside: tracking cell surface proteins with pH-sensitive GFP. TINS. 27, 257-261.
  • Patterson GH, Lippincott-Schwartz J. (2004). Selective photolabeling of proteins using photoactivatable GFP. Methods. 2004 Apr;32(4):445-50.
  • Chudakov, et al. (2004). Photoswitchable cyan fluorescent protein for protein tracking. Nature BioTech. 22, 1435-1439.
  • Shaner, et al. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotech. 22 , 1567 - 1572.
  • Bunt and Wouters. (2004). Visualization of molecular activities inside living cells with fluorescent labels. Int.Rev.Cytology. 237, 205-277.
  • Tsien, R. (2005). Building and breeding molecules to spy on cells and tumors. FEBS letters. 579, 927-932.
  • Vaquero, et al. (2005). Análisis de la dinámica celular con proteínas fluorescentes. Biojournal.net. Nº1, Febrero.
  • Shaner, et al. (2005). A guide to choosing fluorescent proteins. Nature Methods. 2, 905 - 909.
  • Chudakov, et al. (2005). Fluorescent proteins as a toolkit for in vivo imaging. TIB. 23, 605-613.
  • Souslova and Chudakoz. (2006). Photoswitchable cyan fluorescent protein as a FRET donor. Micros.Res.Tech. 69, 207-209.
  • Gurskaya, et al. (2006). Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nature Biotechnology. 24, 461 - 465.
  • Giepmans, et al. (2006). The Fluorescent Toolbox for Assessing Protein Location and Function. Science. 312, 217-224.
  • Várnai and Balla. (2006). Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochimica et Biophysica Acta (BBA). 1761, 957-967.
  • Mena et al. (2006). Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nature Biotechnology. 24, 1569 - 1571.
  • Olenych, et al. (2007). The fluorescence protein color palette. Current Protocols in Cell Biology. Supl. 33. Unit 21.5
  • Chudakov, et al. (2007). Using photoactivable fluorescent protein Dendra2 to track protein movement. Biotechniques. 42, 553-565.
  • Merzlyak, et al. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature Methods. 4, 555-557.
  • Shcherbo, et al. (2007) Bright far-red fluorescent protein for whole-body imaging. Nature Methods. 4, 741-746.
  • Smith, C. (2007) Keeping tabs on fluorescent tags. Nature Methods. 4, 755 - 761.
  • Müller-Taubenberger and Anderson. (2007) Recent advances using green and red fluorescent protein variants.Applied Microbiology and Biotechnology. 77, 1-12.
  • Mathur, J. (2007) The illuminated plant cell. Trends in Plant Science. 11, 506-513.
  • Shaner, et al. (2007) Advances in fluorescent protein technology. Journal of Cell Science. 120, 4247-4260.
  • G. H. Patterson. (2008). Photoactivation and Imaging of Photoactivatable Fluorescent Proteins. Curr. Protocols in Cell Biol. Unit. 21.6.
  • T. Kerppola. (2008) Bimolecular Fluorescence Complementation (BiFC) Analysis as a Probe of Protein Interactions in Living Cells. Annual Review of Biophysics. 37, 465-487.
  • Ai, et al. (2008) Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6: 13.
  • Alieva, et al. (2008) Diversity and evolution of coral Fluorescent Proteins. PLoS ONE. 16, 3(7):e2680.
  • Shaner, et al. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature Methods. 5, 545-551.
  • Day, et al. (2008). Characterization of an improved donor fluorescent protein for Förster resonance energy transfer microscopy. J. Biomed. Opt. 13, 031203.
  • Fluorescent Proteins. (2008). Methods in Cell Biology. 85.