Jueves, 14 de Diciembre de 2017
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

  • 07-12-2017: LSM510 Vertical reparado. Se ha cambiado el escáner X y el láser de Argón (línea 488).
  • 17-11-2017: Disponible de nuevo eescáner resonante del confocal Nikon A1R.
  • 16-11-2017: Apertura   confocal LSM800 a partir del lunes 20. Para realizar las reservas y organizar las sesiones de formación y asistencia, dirigirse al SMOC (lab 310).
  • 09-02-2017 Láser Maitai del Multifotón fuera de servicio. El equipo se puede utilizar como confocal.
 

ENLACES - REACTIVOS Y FLUORÓFOROS - PROTEÍNAS FLUORESCENTES - ARTÍCULOS - ARTÍCULOS DESDE 2009

 

  • Enlaces a revisiones sobre proteínas fluorescentes (Zeiss)
  • McKinney, et al. (2009). A bright and photostable photoconvertible fluorescent protein. Nature Methods. 6, 131-133.
  • Subach, et al. (2009). Monomeric fluorescent timers that change color from blue to red report on cellular trafficking. Nature Chemical Biology. 5, 118-126.
  • Subach, et al. (2009). Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nature Methods. 6, 153-159.
  • Nowotschin, et al. (2009). Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends in Biotechnology. 27, 266-276.
  • Kremers, et al. (2009). Photoconversion in orange and red fluorescent proteins. Nature Methods 6, 355 - 358.
  • Ilya Kelmanson. (2009). Enhanced red and far-red fluorescent proteins for in vivo imaging. Nature Methods, 6, 355-358.
  • Tomosugi, et al. (2009). An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nature Methods. 6, 351 - 353.
  • Jin Zhang. (2009). The Colorful Journey of Green Fluorescent Protein. ACS Chem. Biol. 4, 85–88.
  • Davidson and Campbell. (2009). Engineered fluorescent proteins: innovations and applications. Nature Methods. 6, 713-717.
  • J. Lippincott-Schwartz and G. H. Patterson. (2009). Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. Trends in Cell Biology. 19, 555-565.
  • E. L. Snapp. (2009). Fluorescent proteins: a cell biologist's user guide. Trends in Cell Biology. 19, 649-655.
  • Bogdanov, et al. (2009). Cell culture medium affects GFP photostability: a solution. Nature Methods 6, 859-860.
  • Goedhart, et al. (2010). Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nature Methods. 7, 137-139.
  • Piatkevich and Verkhusha. (2010). Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Current Opinion in Chemical Biology. 14, 23-29.
  • Subach, et al. (2010). Bright Monomeric Photoactivatable Red Fluorescent Protein for Two-Color Super-Resolution sptPALM of Live Cells. J. Am. Chem. Soc. 132, 6481–6491.
  • Maurel, et al. (2010). Photoactivatable and Photoconvertible Fluorescent Probes for Protein Labeling. ACS Chem. Biol. 5, 507–516.
  • Kodama and Hu. (2010). An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. BioTechniques. 5, 793–805.
  • Kaddoum, et al. (2010). One-step split GFP staining for sensitive protein detection and localization in mammalian cells. BioTechniques. 4, 727–736.
  • Shcherbo, et al. (2010). Near-Infrared fluorescente proteins. Nature Methods. 7, 827–829.
  • Chudakov, et al. (2010). Fluorescent proteins and their applications in imaging living cells and tissues. Physiological reviews. 90, 1103-1163.
  • Drobizhev, et al. (2011). Two-photon absorption properties of fluorescent proteins. Nature Methods. 8, 393-399.
  • Wiedenmann, et al. (2011). From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J. Biophotonics. 4, 377-90.
  • Patterson, G. (2011). Photoactivation and Imaging of Optical Highlighter Fluorescent Proteins. Current Protocols in Cytometry. 57:12.23.1–12.23.12.
  • Kremers, et al. (2011). Fluorescence proteins at a glance. J. Cell Science. 124, 157-160.
  • Hansen and Atlung. (2011). YGFP: a spectral variant of GFP. BioTechniques, 50, 411–412.
  • Miyawaki, A. (2011). Proteins on the move: insights gained from fluorescent protein technologies. Nature Reviews Molecular Cell Biology. 12, 656-668.
  • Markwardt, et al. (2011). An improved ceruelan fluorescent ptotein with enhanced brightness and reduced reversible photoswitching. PLoS One. 6:e17896.
  • Olesya, et al. (2011). Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques. 51, 313-327.
  • Ohashi, et al. (2012). Visualization of cofilin-actin and Ras-Raf interactions by bimolecular fluorescence complementation assays using a new pair of split Venus fragments. Biotechniques, 52, 45-50.
  • Goedhart, et al. (2012). Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nature Communications. 3, 751.
  • Zhang, et al. (2012). Rational design of true monomeric and bright photoactivable fluorescent proteins. Nat. Methods. 9, 727-729.
  • Methods in Enzymology. 2012. Volume 505, Pages 2-523.
  • Methods in Enzymology. 2012. Volume 506, Pages 2-490.
  • Hao, et al. (1012). Manipulation of cellular light from green fluorescent protein by a femtosecond laser. Nature Photonics. 6, 651-656.
  • Kodama and Hu. (2012). Bimolecular fluorescence complementation (BiFC): A 5-year update and future perspectives. Biotechniques. 53, 285-298.
  • Shcherbakova and Verkhusha. (2013). Near-infrared fluorescent proteins for multicolor in vivo imaging. Nature Methods. 10, 751-754.
  • Ozawa et al. (2013). Advances in Fluorescence and Bioluminscence Imaging. Analytical Chemistry. 85, 590-609.
  • Shaner, et al. (2013). A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature Methods. 10, 407-409.
  • Tiwary and Nagai. (2013). Smart fluorescent proteins: Innovation for barrier-free superresolution imaging in living cells. Development, Growth and Differentiation. 55, 491-507.
  • Mérola, et al. (2014). Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging. Biotechnology J. 9, 180-191.
  • Durisic, et al. (2014). Singel molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate. Naturem Methods. 11, 156-162.
  • Sengupta, et al. (2014). Superresolution Imaging of Biological Systems using Photoactivated Localization Microscopy. Chemical Reviews. 114, 3189-3202.
  • Nienhaus and Nienhaus. (2014). Fluorescent proteins for live-cell imaging with superresolution. Chemical Society Reviews. 43, 1088-1106.
  • Dean and Palmer. (2014). Advances in fluorescence labelling strategies for dynamic cellular imaging. Nature Chemical Biology. 10, 512-523.
  • Chu, et al. (2014). Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nature Methods. 11, 572-578.
  • Yu, et al. (2015). A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat. Methods. 12, 763-765.
  • Sttarzadeh, et al. (2015). Green to red photoconversion of GFP for protein tracking in vivo. Scientific Reports, 5. Article number: 11771.