Domingo, 20 de Mayo de 2018
    MICROSCOPÍA ÓPTICA Y CONFOCAL
 

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz

 

Microscopía Óptica y Confocal

 

SMOC

 

Comunidad de Madrid

 

ÚLTIMAS NOTICIAS

  • 10-04-2018: Se ha cambiado el láser de Argón (líneas 488 y 514) del confocal META, vuelve a estar al 100% de su capacidad.
  • 02-01-2018: El confocal NIKON A1R+ está fuera de servicio.
  • 09-02-2017: Láser Maitai del Multifotón fuera de servicio. El equipo se puede utilizar como confocal.

 

ENLACES - SOFTWARE - IMAGEJ Y FIJI - ARTÍCULOS IMAGE/FIJI

 

  • Artículo sobre el módulo PixFRET
  • FRET and colocalization analyzer y un artículo referente a este módulo
  • Colocalizaciones y el artículo relacionado
  • Michael Brunk. (2018). HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi.
  • Andrew M. K. Law (2017). Andy’s Algorithms: new automated digital image analysis pipelines for FIJI.
  • Andrew J.Valente. (2017). A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture.
  • Jean-FrançoisGilles (2016). DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis
  • Schindelin, et al. (2015). The ImageJ Ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev.
  • Wiesmann, et al. (2015), Review of free software tools for image analysis of fluorescence cell micrographs. J. Microscopy, 257: 39–53.
  • Chenouard, et al. (2014). Objective comparison of particle tracking methods. Nature Methods. 11, 281-289.
  • Rizk, et al. (2014). Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh. Nature Protocols. 9, 586-596.
  • Chenouard, et al. (2014). Objective comparison of particle tracking methods. Nature Methods. 11, 281-289.
  • Boudaoud, et al. (2014). FibrilTool, an ImageJ plug-in to quantify fibrillar structures in raw microscopy images. Nature protocols. 9, 457-463.
  • Cordelières, et al. (2013). Automated Cell Tracking and Analysis in Phase-Contrast Videos (iTrack4U): Development of Java Software Based on Combined Mean-Shift Processes. PLOS ONE. 8, e81266.
  • De Oliveira Hein, et al. (2012) Extended depth from focus reconstruction using NIH ImageJ plugins: Quality and resolution of elevation maps. 75, 1593-1607.
  • Cardona, et al. (2012) TrakEM2 Software for Neural Circuit Reconstruction. PLoS ONE 7(6): e38011.
  • Focus on Bioimage Informatics. 2012. Nature Methods. 9, 627-763.
  • N. A. Hamilton. (2012) Open Source Tools for Fluorescent Imaging. Methods in Enzymolgy. 504, 393-417.
  • Erik Meijering, et al. (2012) Methods for Cell and Particle Tracking. Methods in Enzymology. 504, 183-200.
  • Sean R. Gallagher. (2010) Digital Image Processing and Analysis with ImageJ. Current Protocols Essential Laboratory Techniques. Appendix 3C. A.3C.1-A.3C.24.
  • Erik Meijering. (2010) Neuron tracing in perspective. Cytometry Part A.
  • Walter, et al. (2010) Visualization of image data from cells to organisms. Nature Methods. 7, S26-S41.
  • Swedlow and Eliceiri. (2009). Open source bioimage informatics for cell biology. Trends in Cell Biology. 19, 656-660.
  • Swedlow, et all. (2009). Bioimage Informatics for Experimental Biology. Annu. Rev. Biophys. 38, 327–46.
  • Popko, et al. (2008). Automated analysis of NeuronJ tracing data. Citometry Part A. Volume 75A Issue 4, Pages 371 - 376.
  • Rossner and Yamada. (2004). What's in a picture? The temptation of image manipulation