Sábado, 24 de Febrero de 2018

Coordinador Científico:
Fco. Javier Díez-Guerra
Responsable Técnico:
Ángeles Muñoz


Microscopía Óptica y Confocal




Comunidad de Madrid



  • 02-01-2018: El confocal NIKON A1R+ está fuera de servicio.
  • 09-02-2017: Láser Maitai del Multifotón fuera de servicio. El equipo se puede utilizar como confocal.




  • Knight, et al. (2003). Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. Am. J. Physiol. Cell Physiol. 284, C1083-C1089
  • Pollok and Heim. (1999). Using GFP in FRET-based applications. TICB. 9, 57-60
  • Bastiaens, P. and Pepperkok, R. (2000). Observing proteins in their natural habitat: the living cell. TIBS. 25, 631-637
  • Sorkin, et al. (2000). Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Current biology. 10, 1395-1398
  • Sorkin, et al. (2000). Interaction of EGF receptor and Grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Supplementary material. Current biology 20 October 2000. 10, 1395-1398
  • Reits and Neefjes. (2001). From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biol. 3, E145-147
  • Zimmermann, et al. (2002). Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS letters. 531, 245-249
  • Dunn, et all. (2002). Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microscopy. 205, 109-112
  • Chen Y, Mills JD, Periasamy A.(2003). Protein localization in living cells and tissues using FRET and FLIM. Differentiation. 71, 528-41
  • Danuser and Waterman-Storer. (2003). Quantitative fluorescente speckle microscopy: where it came from and where it is going. J. Microscopy. 211, 1365-2818
  • Oliveria, et al. (2003). Imaging kinase-AKAP79-phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160, 101-112
  • Sekar and Periasamy. (2003). Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629-633
  • Zimmermann, et al. (2003). Spectral imaging and its applications in live cell microscopy. FEBS letters. 546, 87-92
  • Karpova, et al. (2003). Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microscopy. 209, 56-70
  • Berney and Danuser. (2003). FRET or No FRET: A Quantitative Comparison. Biophysical Journal. 84, 3992-4010
  • Gu Y, Di WL, Kelsell DP, Zicha D. (2004). Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. Journal of Microscopy. 215, 162-173
  • Verkhushaand Lukyanov . (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature Biotech . 22, 289 - 296
  • Karasawa et.al. (2004). Cyan-emitting and orange-emitting fluorescent proteins as a donor/acceptor pair for fluorescence resonance energy transfer. Biochem. J. 38, 307–312
  • Bunt and Wouters. (2004). Visualization of molecular activities inside living cells with fluorescent labels. Int.Rev.Cytology. 237, 205-277
  • Day, R. (2005). Imaging protein behavior inside the living cell. Molecular and Cellular Endocrinology. 230, 1-6
  • Barbato, et al. (2005). Interaction of Tau with Fe65 links tau to APP. Neurobiology of Disease. 18, 399-408
  • Voss, et al. (2005). Quantitative imaging of protein interactions in the cell nucleus. Biotechniques. 38, 413-424
  • Sprague and McNally. (2005). FRAP analysis of binding: proper anf fitting. TICB. 15, 84-91
  • Wallrabe and Periasamy. (2005). Imaging protein molecules using FRET and FLIM microscopy. Curr.Op.Biotech. 16, 19-27
  • Köster, et al. (2005). Nucleocytoplasmatic shuttling revealed by FRAP and FLIP technologies. Curr.Op.Biotech. 16, 28-34
  • Welsh and Kay. (2005). Bioluminiscence imaging in living organisms. Curr.Op.Biotech. 16, 73-78
  • Nguyen and Daugherty. (2005). Evolutionary optimization of fluorescent proteins for intracellular FRET. Nature Biotechnology. 23, 355 - 360
  • Houtsmuller, A. (2005). Fluorescence Recovery after Photobleaching: Application to Nuclear Proteins. Advances in Biochemical Engineering/Biotechnology. 95, 177-199
  • Day and Schaufele. (2005). Imaging molecular interactions in living cells. Mol. Endocrinology. 19, 1675-1688
  • Presley. (2005). Imaging secretory pathway: the past and future impact of live cell optical techniques. Biochem. Biophys. Acta. 1744, 259-272
  • Valentin, et al. (2005). Photoconversion of YFP into a CFP-like species during acceptor photobleaching FRET experiments. Nature Methods 2, 801
  • Feige, et al. (2005). PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Mic.Res.Tech. 68, 51-58
  • Kiyokawa, et al. (2006). Fluorescence (Förster) resonance energy transfer imaging of oncogene activity in living cells. Cancer Sci 2006. 97, 8–15
  • Wallrabe, et al. (2006). Issues in confocal microscopy for quantitative FRET analysis. Micr.Res.Tech. 69, 196 - 206
  • Pfleger and Eidne. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nat.Met. 3, 165-174
  • Hachet-Haas. (2006). FRET and colocalization analyzer - A method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ Plug-in. Micr. Res. Tech. 69, 941-956
  • Snapp and Hegde. (2006). Rational Design and Evaluation of FRET Experiments to Measure Protein Proximities in Cells. Current Protocols in Cell Biology. Unit 17.9
  • Herppola, T.K. (2006). Visualization of molecular interactions by fluorescence complementation. Nat. Rev. Mol. Cell Biol. 7, 449-456
  • Demarco, et al. (2006). Monitoring dynamic protein interactions with photoquenching FRET. Nature Methods. 3, 519-524
  • Horst Wolff, et al. (2006). Live-cell assay for simultaneous monitoring of expression and interaction of proteins. BioTechniques. 41, 688-692
  • Tramier, et all. (2006). Sensitivity of CFP/YFP and GFP/mCherry pairs to donor photobleaching on FRET determination by fluorescence lifetime imaging microscopy in living cells. Microscopy Research and Technique. 69, 933 - 939