Domingo, 17 de Diciembre de 2017

Neuropatología Molecular

    Señalización mitocondrial del calcio y señalización de insulina/leptina en envejecimiento

 


 Lab 321 Grupo Jorgina Satrustegui 400

 


Jorgina Satrústegui

DCompogrupo

DListado

 

Resumen de Investigación:

La entrada de Ca2+ en la mitocondria a través del uniportador de Ca2+ es importante para la señalización por Ca2+ pero su persistencia en la mitocondria se ha asociado con disfunción mitocondrial y muerte celular. Estamos interesados en el estudio de sistemas mitocondriales de señalización por Ca2+ que no requieran su entrada en el orgánulo: los transportadores mitocondriales de aspartato-glutamato (AGC) aralar y citrina, y los de ATP-Mg/Pi, o SCaMCs. Ambos se activan por Ca2+ extramitocondrial regulando el transporte de metabolitos y la funcionalidad mitocondrial.
Nos hemos centrado en su papel en la regulación de la respiración en células intactas y la regulación de los niveles de aspartato y glutamato cerebrales y su tráfico cerebral.
Hemos encontrado que estos transportadores, en particular AGC1/Aralar, son esenciales en neuronas en cultivo para la respiración mitocondrial basal y para su estimulación en respuesta a diferentes cargas de trabajo.

 Jorgina Satrustegui Fig01 300 ------

 

El uniportador de calcio mitocondrial (MCU) y los transportadores de metabolitos dependientes de calcio, SCaMCs y AGCs, median la señalización por Ca2+ a la mitocondria. MCU y SCaMCs son activados por concentraciones de [Ca2+] en el rango mM mientras que los AGCs requieren concentraciones menores Ca2+ citosólico, sobre 100-300 uM, para su activación

 

 

Jorgina Satrustegui Fig02 300

 
Imágenes representativas de neuronas, obtenidas de ratones silvestres y deficientes en el transportador SCaMC-3, transfectadas con la sonda mitocondrial GO-ATeam-2 para monitorizar variaciones en los niveles mitocondriales de ATP tras la adición de NMDA.  

 

 

 

 
   

El ratón KO para AGC1/Aralar recapitula muchas características de la deficiencia humana en AGC1, incluyendo niveles cerebrales muy bajos de N-acetil-aspartato, hipomielinización y convulsiones. Propusimos que en cerebro la síntesis de glutamato y glutamina en las células gliales requiere del aspartato producido en las neuronas, y recientemente hemos verificado esta propuesta en retina, encontrando que la síntesis de glutamina en las células de Müller depende del flujo transcelular de aspartato desde los fotorreceptores. Estas nuevas funciones de AGC1/Aralar-MAS en el tráfico intra- e inter-celular de aminoácidos pueden servir de base para nuevas estrategias terapéuticas en esta y otras enfermedades cerebrales.
El envejecimiento se caracteriza por la presencia de resistencia a insulina y leptina, y enfermedad cardiovascular. Nuestro trabajo se centra en dos aspectos principales: 1) Las variaciones de la función cardíaca con la edad y la influencia de la restricción calórica moderada; y 2) Los cambios con la edad en los efectos de CCK, tanto de saciedad como de sensibilización a insulina y la posibilidad de revertir dichos cambios.


 

Publicaciones:

  • Llorente-Folch, I., Sahún, I., Contreras, L., Casarejos, MJ., Grau JM, Saheki, T., Mena, MA., Satrústegui, J., Dierssen M. and Pardo, B. (2013) AGC1-malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. J. Neurochem. 124, 347-362.
  • Amigo, I., Traba, J., González-Barroso, MM., Rueda, CB., Fernández, M., Rial, E., Sánchez, A, Satrústegui, J. and del Arco, A. (2013) Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J. Biol. Chem. 288, 7791-7802.
  • Llorente-Folch, I., Rueda, CB., Amigo, I., del Arco, A., Saheki, T., Pardo, B. and Satrústegui, J. (2013) Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J. Neurosci. 33, 13957-13971.
  • Du, J., Cleghorn, W., Contreras, L, Linton, JD., Chan, GC., Chertov, AO., Saheki, T., Govindaraju, V., Sadilek, M., Satrústegui J, Hurley JB. (2013) Cytosolic reducing power preserves glutamate in retina. Proc. Natl. Acad. Sci. U. S. A. 110, 18501-18506.
  • Pla-Martín, D., Rueda, CB., Estela, A., Sánchez-Piris, M., González-Sánchez, P., Traba, J., de la Fuente, S., Scorrano, L., Renau-Piqueras, J., Alvarez, J., Satrústegui, J. and Palau, F. (2013) Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol. Dis. 55, 140-151.
    • Du J, Cleghorn WM, Contreras L, Lindsay K, Rountree AM, Chertov AO, Turner SJ, Sahaboglu A, Linton J, Sadilek M, Satrústegui J, Sweet IR, Paquet-Durand F, Hurley JB. (2013) Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina. J. Biol. Chem. 288, 36129-36140.
    • Pardo B, Contreras L, Satrústegui J. (2013) De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Front. Endocrinol. 4, 149.
    • Rueda, CB., Llorente-Folch, I., Amigo, I., Contreras, L., González-Sánchez, P., Martínez-Valero, P., Juaristi, I., Pardo, B., del Arco, A. and Satrústegui J. (2014) Ca(2+) regulation of mitochondrial function in neurons. Biochim. Biophys. Acta 1837, 1617-1624.
    • Lindsay, KJ., Du, J., Sloat, SR., Contreras, L., Linton, JD., Turner, SJ., Sadilek, M., Satrústegui, J. and Hurley, JB. (2014) Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc. Natl. Acad. Sci. U. S. A. 111, 15579-15584.
    • Granado, M., Rubio, C., Amor, S., Monge, L., Fernández, N., Carreño-Tarragona, G., Carrascosa, JM. and García-Villalón ÁL. (2014) Effects of age and caloric restriction on the cardiac and coronary response to endothelin-1 in rats. Exp. Gerontol. 60, 183-189.

    Capítulos de libros:

    del Arco, A. and Satrústegui, J. (March 2013) Mitochondrial Carriers. In: eLS. John Wiley & Sons, Ltd: Chichester.


 

Tesis doctorales:

Ignacio Amigo de la Huerga (2013). “Characterization of SCaMC-3, the mitochondrial ATP-Mg/Pi carrier present in liver and brain”. UAM. Jorgina Satrústegui y Araceli del Arco

Irene Llorente Folch (2013). “New roles of aralar, the brain mitochondrial aspartate/glutamate carrier in dopamine handling glutamate excitotoxicity and regulation of mitocondrial respiration”. UAM. Jorgina Satrústegui y Beatriz Pardo.

Carlos B. Rueda Díez (2014). “Ca2+ modulation of mitochondrial function under physiological and pathological stimulation: Role of the ATP-Mg/Pi carrier, SCaMC-3”. UAM. Jorgina Satrústegui, Beatriz Pardo y Araceli del Arco.


 

Llorente-Folch, I., Sahún, I., Contreras, L., Casarejos, MJ., Grau JM, Saheki, T., Mena, MA., Satrústegui, J., Dierssen M. and Pardo, B. (2013) AGC1-malate aspartate shuttle activity is critical for dopamine handling in the nigrostriatal pathway. J. Neurochem. 124, 347-362.

Amigo, I., Traba, J., González-Barroso, MM., Rueda, CB., Fernández, M., Rial, E., Sánchez, A, Satrústegui, J. and del Arco, A. (2013) Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J. Biol. Chem. 288, 7791-7802.

Llorente-Folch, I., Rueda, CB., Amigo, I., del Arco, A., Saheki, T., Pardo, B. and Satrústegui, J. (2013) Calcium-regulation of mitochondrial respiration maintains ATP homeostasis and requires ARALAR/AGC1-malate aspartate shuttle in intact cortical neurons. J. Neurosci. 33, 13957-13971.

Du, J., Cleghorn, W., Contreras, L, Linton, JD., Chan, GC., Chertov, AO., Saheki, T., Govindaraju, V., Sadilek, M., Satrústegui J, Hurley JB. (2013) Cytosolic reducing power preserves glutamate in retina. Proc. Natl. Acad. Sci. U. S. A. 110, 18501-18506.

Pla-Martín, D., Rueda, CB., Estela, A., Sánchez-Piris, M., González-Sánchez, P., Traba, J., de la Fuente, S., Scorrano, L., Renau-Piqueras, J., Alvarez, J., Satrústegui, J. and Palau, F. (2013) Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiol. Dis. 55, 140-151.

Du J, Cleghorn WM, Contreras L, Lindsay K, Rountree AM, Chertov AO, Turner SJ, Sahaboglu A, Linton J, Sadilek M, Satrústegui J, Sweet IR, Paquet-Durand F, Hurley JB. (2013) Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina. J. Biol. Chem. 288, 36129-36140.

Pardo B, Contreras L, Satrústegui J. (2013) De novo Synthesis of Glial Glutamate and Glutamine in Young Mice Requires Aspartate Provided by the Neuronal Mitochondrial Aspartate-Glutamate Carrier Aralar/AGC1. Front. Endocrinol. 4, 149.

Rueda, CB., Llorente-Folch, I., Amigo, I., Contreras, L., González-Sánchez, P., Martínez-Valero, P., Juaristi, I., Pardo, B., del Arco, A. and Satrústegui J. (2014) Ca(2+) regulation of mitochondrial function in neurons. Biochim. Biophys. Acta 1837, 1617-1624.

Lindsay, KJ., Du, J., Sloat, SR., Contreras, L., Linton, JD., Turner, SJ., Sadilek, M., Satrústegui, J. and Hurley, JB. (2014) Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc. Natl. Acad. Sci. U. S. A. 111, 15579-15584.

Granado, M., Rubio, C., Amor, S., Monge, L., Fernández, N., Carreño-Tarragona, G., Carrascosa, JM. and García-Villalón ÁL. (2014) Effects of age and caloric restriction on the cardiac and coronary response to endothelin-1 in rats. Exp. Gerontol. 60, 183-189.

Capítulos de libros:

del Arco, A. and Satrústegui, J. (March 2013) Mitochondrial Carriers. In: eLS. John Wiley & Sons, Ltd: Chichester.